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INTRODUCTION 

Prostate cancer is the second leading cause of cancer-related deaths among men in the US. The 
American Cancer Society estimates 230,000 new cases and nearly 30,000 deaths for 2015. Despite recent 
advances in diagnosis and treatment, many patients who underwent treatment still experience recurrent, 
androgen-independent prostate cancer, for which there are limited treatment options. Most common alterations 
in prostate tumors include the functional inactivation/deletion of tumor suppressors (e.g. Pten, p53, or Nkx3.1), 
deregulation of growth factor signaling (e.g. IGF-1R and ErbB receptors) and their effectors (e.g. PI3K), and 
genomic rearrangements (e.g. TMPRSS2-ERG)[1-7]. Critical links between inflammatory pathways, such as NF-

B, and malignant progression have also been established in prostate cancer[8-13]. Efforts to develop 
therapeutic approaches and chemopreventive strategies (both dietary and pharmacological) to mitigate the 
prostate cancer burden have been only partially successful, largely due to the incomplete picture of the 
mechanisms orchestrating prostate cancer development and progression.  

Studies have recognized protein kinase C (PKC) isozymes as eminent players of cancer progression[14-

19]. Based on biochemical and structural differences, these Ser-Thr kinases have been classified into calcium-

dependent “classical” cPKCs (), calcium-independent “novel” nPKCs (), and atypical PKCs ( and 

)[14, 19].  Individual PKCs have dissimilar roles in controlling cancer signaling pathways such as Ras/Erk,

PI3K/Akt, and NF-B, thereby reflecting their distinctive involvement in cancer progression.  Emerging 

information established PKC as an oncogenic kinase and cancer biomarker[14, 19-27]. Early studies revealed 

that overexpression of PKC in fibroblasts or epithelial cells confer growth advantage or can lead to malignant 

transformation[14, 20, 25]. Accordingly, PKC is a pro-survival (anti-apoptotic) kinase, and it has been widely 
implicated in motility/invasion/metastasis, including in the secretion of metalloproteases[22-24, 28-33]. A very 

interesting fact is that up-regulation of PKC occurs in human cancer, as extensively demonstrated in prostate, 

breast, lung, ovarian, and head and neck cancer [14, 19, 22-27, 33]. PKC is essentially undetectable in normal 
prostate epithelium or benign prostatic epithelium, however it is highly expressed in the majority of prostate 

tumors and in recurrent disease[17-18]. PKC genetic ablation impairs tumor formation and metastasis in the 

TRAMP mouse model of prostate cancer[24]. Central roles for PKC have also been established in the 
progression of other cancers, such as melanoma, breast and lung cancer[19, 23, 26, 32-33]. Regardless, it is not yet 

clear if PKC overexpression is causally related to the initiation and progression of the disease.  Likewise, the 

mechanistic basis of the PKC mitogenic, survival and oncogenic activity, as well as the PKC downstream 
effectors, remain to be fully elucidated. 

We have generated transgenic models to target PKC isozymes to the mouse prostate under the control 

of the androgen-responsive probasin (PB) promoter[29]. Interestingly, only PB-PKC mice developed dysplastic 

changes characteristic of prostatic intraepithelial neoplasia (PIN). Strikingly, prostate-specific PKC transgenic 
mice when intercrossed with the mice haploinsufficient for Pten, another common genetic alteration in human 

prostate cancer, resulted in a compound mutant mice (PB-PKC;Pten+/- mice) that developed fully invasive 

adenocarcinoma. We recently demonstrated that transgenic overexpression of PKC in the mouse prostate 

causes preneoplastic lesions with elevated NF-B levels and that PKC is an essential mediator of NF-B 
activation in prostate cancer[8].  

In the previous DOD funding period, we specifically identified a functional link between the oncogenic 

kinase PKC and inducible cyclooxygenase-2 (COX-2), a well-known NF-B responsive gene. 
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Cyclooxygenase (COX) converts arachidonic acid to PGE2, PGD2, PGI2, PGF2 and thromboxane A2 
(TXA2), collectively the prostanoids[34-36]. Up-regulated expression of COX-2 is an early event during 
carcinogenesis, and it has been mostly associated with poor prognosis[37-39]. Cell, animal, and clinical studies 
ascertained key roles for COX-2 in tumor formation and progression across a range of cancers. Notably, COX-
2 has been reported to be elevated in multiple solid tumors, including prostate, colorectal, breast, and 
pancreatic cancer[40-44]. Concordantly, studies reported that COX-2 is overexpressed in primary prostate cancer 
with metastatic potential and predicts poor patient survival[38-39, 43-45]. Selective COX-2 inhibitors reduce 
proliferation and induce apoptosis in prostate cancer cells, as well as inhibit the growth of prostate tumors and 
tumor angiogenesis in nude mice[43, 45-48].  

In the last year progress report, we have demonstrated that: 

(i) Targeted PKC overexpression in normal prostate epithelium leads to COX-2 activation. 

(ii) To understand in depth the underlying molecular mechanisms of PKC-mediated phenotype in prostate 

cancer, we generated mouse cellular models overexpressing PKC both in Pten (a tumor suppressor 
gene) + and – background(s) to evaluate effect on COX-2 activation during prostate carcinogenesis. 

(iii) PKC overexpression and Pten loss cooperate for cell proliferation, growth, migration and invasiveness. 

(iv) PKC overexpression and Pten loss cooperate for NF-B activation. 

(v) PKC overexpression and Pten loss cooperate for enhanced COX-2 activation and PGE2 production. 

(vi) COX-2 inhibition specifically impaired the viability of PKC overexpressing cells. 

(vii) COX-2 play a critical role in PKC mediated survival of murine prostate cells. 

(viii) COX-2 inhibition reduced the PGE2 synthesis specifically in PKC overexpressors. 

(ix) COX-2 inhibition decreased the invasiveness of PKC overexpressors. 

(x) COX-2 inhibition inhibited the growth of CaP8-PKC tumors in athymic nude mice and activates 
apoptotic pathway. 

(xi) A correlation between PKC levels, NF-B hyperactivation and COX-2 up-regulation was demonstrated 
in human prostate cancer specimens. 

The main goal of our continued research supported by DOD is to determine if PKC and Pten mediate 
COX-2 activation in mice prostate and to determine the levels of relevant signaling molecules and to 
understand the hidden underlying mechanism of activation.   

BODY 

1. Enhanced signaling alterations in lesions from PKC transgenic mice.  In order to establish a

molecular signature of lesions in PB-PKC and PB-PKC;Pten+/- mice we carried out
immunohistochemistry (IHC) analysis of prostates from 12-month old mice. We found elevated phospho
(activated)-Akt staining in PIN lesions, an effect that was more striking in adenocarcinimas from PB-
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PKC;Pten+/- mice. Akt downstream effectors S6 and mTOR were also hyperactivated in PINs and 
adenocarcinomas (Fig. 1A), suggesting the involvement of the PI3K/Akt axis in the phenotypic changes 

driven by PKC overexpression. We also observed elevated levels of Stat3, phospho-Stat3, and 

nuclear NF-B (Fig. 1A and B). Similar increase in the protein expression level of these signaling 
markers were observed by Western blot analysis in the total cell lysate (for Akt, mTOR, Stat3) and in 

the nuclear lysate for NF-B (Fig. 1C and D). Strikingly, PKC cooperates with Pten loss to further 
enhance the protein expression of these relevant molecular signatures. These findings are highly 

significant because both Pten loss and PKC overexpression are common alterations in human 
prostate cancer. 

2. Enhanced COX-2 activation in lesions from PKCPten transgenic mice. As evident in Fig. 2

enhanced COX-2 levels were observed in total cell extracts from prostates of PB-PKC mice and the

effect is further enhanced in adenocarcinomas from PB-PKC-Pten+/-mice.

3. COX-2 inhibition impairs the activation of signaling pathways in adenocarcinomas formed as a

consequence of  PKC overexpression and Pten loss. In order to determine the relevance of COX-2

in the context of PKC overexpression, we fed the PB-PKC-Pten+/-mice with the diet containing COX-

2 inhibitor, rofecoxib. For this experiment, PB-PKC-Pten+/-mice were divided in 2 groups. Group 1
received the control laboratory diet. Group 2 mice were fed with rofecoxib (COX-2 inhibitor) diet.
Notably, total cell extracts from prostates of mice fed with rofecoxib diet showed significant reduction in
the activation of key signaling pathways including phosphorylation of Akt, its downstream effector mTor
and also the phosphorylation of Stat3 as compared to the adenocarcinomas from mice receiving control
diet (Fig. 3 A and B).

4. PKC overexpression and Pten loss cooperate for Erk, Akt and mTOR activation. In the last

funding period, we have generated murine cellular models of PKC overexpression and Pten loss
recapitulating the scenario observed in our transgenic mice model. The strong cooperativity between

PKC overexpression and loss of the Pten tumor suppressor gene was observed in these cellular
models for growth, motility and invasiveness; suggestive of changes in key signaling events. Notably,

as can be seen in Fig. 4, a remarkable cooperation for signaling activation was observed upon PKC
overexpression and Pten loss. CaP8-PKC cells with PKC overexpression and Pten loss show
significant activation of Akt and mTOR in response to PDGF, thus recapitulating results observed in
lesions from PB-PKC;Pten+/- mice. A similar effect was observed for Erk.

5. Gene expression analysis in murine prostate epithelial cell lines. As PKC overexpression and
Pten loss have significant influence on the COX-2 activation, a gene that is upregulated in metastatic
prostate cancer, we next intended to fully elucidate the global expression changes that might occur in

the various molecular signatures as a result of PKC overexpression and Pten loss. Towards this goal,

we conducted a microarray analysis with the four murine prostate epithelial cell line (P8, P8-PKC,
CaP8, CaP8-PKC) that we generated recapitulating the scenario observed in our transgenic mice
model.  Microarray analysis of P8-derived cell lines revealed major changes in gene expression by

PKC overexpression, Pten loss, or both (Fig. 5). After statistical testing procedures, we identified in

total 573, 898 and 1101 genes respectively in CaP8, P8-PKC and CaP8-PKC genotypes that were
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significantly dysregulated when compared to P8 parental background. In addition, Venn-diagram 
analysis shown in Fig. 5A not only reveal the specificity and intersection of transcripts but also clearly 
describes the distribution of significantly differentially expressed genes (both up- and down-regulated) 
ensuing comparison amongst different groups with reference to P8. Notably, though 289, 487, 556 

genes were upregulated in CaP8, P8-PKC and CaP8-PKC categories respectively either singly or in 

consortium, 263 genes were found to be exclusively up-regulated in CaP8-PKC group vs P8. Likewise, 
in spite of an overlap of down-modulated genes in different backgrounds, our analysis identified another 

set of 263 genes that were uniquely down-regulated in CaP8-PKC genotype vs P8. Hierarchical 

cluster analysis further demonstrated that PKC overexpression in the context of Pten loss (CaP8-

PKC) has significant impact on the gene expression profile compared to P8. Heat map shown in Fig. 
5B markedly demarcate up/down-regulated genes in the two genotypes. To identify the most relevant 

functions/pathways altered by PKC overexpression and/or Pten loss in prostate epithelial cells, we 
used Gene Ontology (GO) and Kyoto Enclopedia Genes and Genomes (KEGG) databases (Fig 5C). 
This analysis uncovered major changes in key functions, including metabolic pathways, angiogenesis, 
motility, and proliferation and identified an important chemokine CXCL13 playing crucial role in prostate 
carcinogenesis. We then compared results from our microarray gene set analysis with a publicly 
available dataset of prostate cancer patients (GSE6919 dataset, 167 patients).  Interestingly, this 

comparison revealed that the model of PKC overexpression and Pten loss (CaP8-PKC cells which 
have high COX-2 activation) displays a similar pattern of expression than that observed in prostate 
cancer metastasis (Fig. 5D). 

6. Inhibition of both canonical and non-canonical NF-B pathway decreased the COX-2 activation

mediated by PKC overexpression and Pten loss. As COX-2 is known to be a NF-B regulated

gene, we dissected if canonical or non-canonical NF-B pathway is associated with the activation of

COX-2 observed as a result of PKC overexpression and Pten loss. As can be seen in Fig 6A, LPS
treatment resulted in significant activation of COX-2 in murine prostate epithelial cells and this effect is

more pronounced in CaP8-PKC cells. To inhibit canonical or non-canonical NF-B pathway we used

RNAi approach. We silenced the expression of NIK, IKK, IKK expression in the CaP8-PKC cells as

well as we used IB repressor plasmid to specifically affect the canonical pathway. As can be seen in

Fig. 6B silencing the expression of NIK, IKK, IKKsignificantly reduced the LPS-induced COX-2

mRNA levels. Similar effect was observed in response to the IB repressor (Fig. 6C). These results

suggest the involvement of both canonical and non-canonical NF-B pathway in COX-2 induction as a

consequence of PKC overexpression and Pten loss in prostate cells. We confirmed the knockdown

mediated by different RNAi used by western blot (Fig. 6D) and the activity of IB repressor plasmid by

measuring NF-B luciferase activity.

KEY RESEARCH ACOMPLISHMENTS 

(i) We successfully demonstrated that PKC cooperates with Pten loss to activate key relevant 
signaling molecules (Akt, S6, mTOR, Stat3, NF-kB) in mouse model of prostate cancer using IHC 
and western blot approaches. 
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(ii) We successfully demonstrated that PKC cooperates with Pten loss to activate COX-2 in mouse 
model of prostate cancer. 

(iii) We successfully demonstrated that COX-2 inhibition impairs the activation of signaling pathways in 

adenocarcinomas formed as a consequence of PKC overexpression and Pten loss. 

(iv) We successfully demonstrated that in murine cellular model of PKC overexpression and Pten 
loss, a striking enhancement in the signaling events (in particular of Erk, Akt and mTOR activation) 
occurred in response to growth factors relevant in prostate cancer. 

(v) Our analysis of global gene expression by microarray revealed significant changes in gene related 

to EMT, adhesion, metabolism, and invasiveness following PKC overexpression, Pten loss or 

both. More importantly model of PKCoverexpression and Pten loss (CaP8-PKC cells which also 
showed enhanced COX-2 activation) displays a similar pattern of expression than that observed in 
prostate cancer metastasis in human patients. 

(vi) We successfully demonstrated  that  inhibiting both canonical and non-canonical NF-B pathway 

decreased the COX-2 activation mediated by PKC overexpression and Pten loss. 

CONCLUSION 

The main conclusions from the research carried out during the final year of DOD funding are as 

follows: (i) PKC mediates the activation of COX-2, a well-known NF-B responsive gene in prostate 

cancer. (ii) PKC cooperates with tumor suppressor Pten leading to the formation of adenocarcinoma in 
mice which displayed hyperactivation of key signaling pathways and more importantly COX-2 which is 
highly relevant in metastatic prostate cancer. (iii) our global gene expression profile also confirms the 
relevance of COX-2 activation together with expression changes in genes associated with important 
biological pathways that play crucial role in prostate carcinogenesis. These findings suggest a crucial 

role of PKC in several important cellular processes relevant to prostate cancer progression, including 

survival, proliferation, metastasis and invasion. Overall, our study identified COX-2 as a PKC-
regulated gene and also suggests that COX-2 is a potential mediator of PKC oncogenesis in prostate 
cancer, particularly in the context of Pten loss. Our findings have been honored at Annual meetings of 
American Association of Cancer Research 2014 under “Late Breaking Abstract” category and in 2015 
with an AACR-Aflac Scholar-in-training award.  

REPORTABLE OUTCOMES 

1. Garg, R., Benedetti, L., Abera, M., Wang, H., Abba, M., and Kazanietz, M.G. Protein kinase C and
cancer: what we know and what we don’t. Oncogene, 33: 5225-5237 (2014).
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2. Garg, R., Abera, M. B., Lal, P., Blando, J., Benavides, F., Feldman, M. D., Smyth, E. M., and Kazanietz,
M.G. COX-2 as a mediator of oncogenic PKCε in prostate cancer. Late Breaking Abstract.
Proceedings of American Association of Cancer Research 104th Annual Meeting. Cancer Res. 73(8),
Suppl. 1; doi:10.1158/1538-7445.AM2013-LB-154 154 (2013).

3. Garg, R., Abba M., and Kazanietz, M.G. CXCL13 as a mediator of oncogenic PKCε in prostate cancer.
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APPENDICES 

FIGURE LEGENDS: 

Figure 1: Enhanced signaling alterations in lesions from PKC transgenic mice.  (A) 
Immunohistochemical analyses for Akt, phospho-Akt, S6, phosphor-S6, Stat3, phospho-Stat3 staining was 

performed on ventral prostates from PB-PKC, Pten, PB-PKC;Pten or wild-type FVB/N male mice at 12 

months. (B) Immunohistochemical analyses for phospho-NF-B staining was performed on ventral prostates 

from PB-PKC, Pten, PB-PKC;Pten or wild-type FVB/N male mice at 12 months. (C) Protein expression of 
Akt, phospho-Akt, mTOR, phospho-mTOR, ( D) Stat3 and phospho-Stat3 in total cell extracts from prostates of 
mice (12 months of age) belonging to different groups was analyzed by western blot. (E) Protein expression of 
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NF-B in nuclear extracts from prostates of mice (12 months of age) belonging to different groups was 
analyzed by western blot.  

Figure 2: Enhanced COX-2 activation in lesions from PKCPten transgenic mice. Protein expression of 
COX-2 in total cell extracts from prostates of mice (12 months of age) belonging to different groups was 
analyzed by western blot. 

Figure 3: COX-2 inhibition impairs the activation of signaling pathways in adenocarcinomas formed as 

a consequence of  PKC overexpression and Pten loss. PB-PKC;Pten mice were divided in 2 groups. 
Group 1 received the control laboratory diet. Group 2 mice were fed with rofecoxib diet. Protein expression of 
(A) Akt, phospho-Akt, mTOR, phospho-mTOR, (B) Stat3 and phospho-Stat3 in total cell extracts from prostates 
of mice (12 months of age) belonging to different groups was analyzed by western blot. 

Figure 4: PKC overexpression and Pten loss cooperate for Erk, Akt and mTOR activation. Murine 
prostate epithelial cells were serum-starved for 48 h and then stimulated with PDGF (5 ng/ml) for 2 min. Effect 

of PKC overexpression and Pten loss were analyzed on the activation of Akt, mTOR and Erk signaling 
pathway by western blot analysis. Representative blots are shown. 

Figure 5: Gene expression analysis in murine prostate epithelial cell lines. (A) Venn diagrams 
representing the regulated genes in different genotypes (+/- 2-fold; q<0.05). (B) Heat Map. (C) Enriched gene-

ontology (GO) processes and biological pathways in different backgrounds owing to PKC overexpression and 

Pten loss with respect to P8 as control. (D) Heat map showing genes deregulated in human prostate cancer

(GSE6919 database). Changes in CaP8-PKC cells display a similar pattern of expression as observed in 
human prostate cancer metastasis.  

Figure 6: Inhibition of both canonical and non-canonical NF-B pathway decreased the COX-2 

activation mediated by PKC overexpression and Pten loss.  (A) Cells were serum-starved for 48 h and 

then stimulated with LPS 5 g/ml for 4h. Effect of PKC overexpression and Pten loss were analyzed on COX-

2 mRNA expression by qPCR. *, p<0.05 vs control; n=3. (B) CaP8-PKC cells were transfected with non-target  

control (NTC) or siRNA duplexes of NIK, IKK, IKK or (C) with plasmids encoding IB super-repressor 

(IBr) or vector control. Cells were serum-starved and subsequently stimulated with LPS (5 g/ml, 4 h). Effect 
of inhibition of canonical or non-canonical NF-kB signaling was analyzed on the expression of NF-kB-
dependent genes: COX-2 by qPCR. (D) Western blot analysis was done to confirm the depletion by different 

siRNA dulplexes, and NF-B luciferase activity was measured to validate repression by IkBar . *, p<0.05 vs 
control.  
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